home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Software of the Month Club 2000 October
/
Software of the Month - Ultimate Collection Shareware 277.iso
/
pc
/
PROGRAMS
/
UTILITY
/
WINLINUX
/
DATA1.CAB
/
programs_-_include
/
ASM-SPAR.{_6
/
BITOPS.H
< prev
next >
Wrap
C/C++ Source or Header
|
1999-09-17
|
9KB
|
409 lines
/* $Id: bitops.h,v 1.54 1998/09/21 05:07:34 jj Exp $
* bitops.h: Bit string operations on the Sparc.
*
* Copyright 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright 1996 Eddie C. Dost (ecd@skynet.be)
*/
#ifndef _SPARC_BITOPS_H
#define _SPARC_BITOPS_H
#include <linux/kernel.h>
#include <asm/byteorder.h>
#ifndef __KERNEL__
/* User mode bitops, defined here for convenience. Note: these are not
* atomic, so packages like nthreads should do some locking around these
* themself.
*/
#define __SMPVOL
extern __inline__ unsigned long set_bit(unsigned long nr, void *addr)
{
int mask;
unsigned long *ADDR = (unsigned long *) addr;
ADDR += nr >> 5;
mask = 1 << (nr & 31);
__asm__ __volatile__("
ld [%0], %%g3
or %%g3, %2, %%g2
st %%g2, [%0]
and %%g3, %2, %0
"
: "=&r" (ADDR)
: "0" (ADDR), "r" (mask)
: "g2", "g3");
return (unsigned long) ADDR;
}
extern __inline__ unsigned long clear_bit(unsigned long nr, void *addr)
{
int mask;
unsigned long *ADDR = (unsigned long *) addr;
ADDR += nr >> 5;
mask = 1 << (nr & 31);
__asm__ __volatile__("
ld [%0], %%g3
andn %%g3, %2, %%g2
st %%g2, [%0]
and %%g3, %2, %0
"
: "=&r" (ADDR)
: "0" (ADDR), "r" (mask)
: "g2", "g3");
return (unsigned long) ADDR;
}
extern __inline__ void change_bit(unsigned long nr, void *addr)
{
int mask;
unsigned long *ADDR = (unsigned long *) addr;
ADDR += nr >> 5;
mask = 1 << (nr & 31);
__asm__ __volatile__("
ld [%0], %%g3
xor %%g3, %2, %%g2
st %%g2, [%0]
and %%g3, %2, %0
"
: "=&r" (ADDR)
: "0" (ADDR), "r" (mask)
: "g2", "g3");
}
#else /* __KERNEL__ */
#include <asm/system.h>
#ifdef __SMP__
#define __SMPVOL volatile
#else
#define __SMPVOL
#endif
/* Set bit 'nr' in 32-bit quantity at address 'addr' where bit '0'
* is in the highest of the four bytes and bit '31' is the high bit
* within the first byte. Sparc is BIG-Endian. Unless noted otherwise
* all bit-ops return 0 if bit was previously clear and != 0 otherwise.
*/
extern __inline__ unsigned long test_and_set_bit(unsigned long nr, __SMPVOL void *addr)
{
register unsigned long mask asm("g2");
register unsigned long *ADDR asm("g1");
ADDR = ((unsigned long *) addr) + (nr >> 5);
mask = 1 << (nr & 31);
__asm__ __volatile__("
mov %%o7, %%g4
call ___set_bit
add %%o7, 8, %%o7
" : "=&r" (mask)
: "0" (mask), "r" (ADDR)
: "g3", "g4", "g5", "g7", "cc");
return mask != 0;
}
extern __inline__ void set_bit(unsigned long nr, __SMPVOL void *addr)
{
(void) test_and_set_bit(nr, addr);
}
extern __inline__ unsigned long test_and_clear_bit(unsigned long nr, __SMPVOL void *addr)
{
register unsigned long mask asm("g2");
register unsigned long *ADDR asm("g1");
ADDR = ((unsigned long *) addr) + (nr >> 5);
mask = 1 << (nr & 31);
__asm__ __volatile__("
mov %%o7, %%g4
call ___clear_bit
add %%o7, 8, %%o7
" : "=&r" (mask)
: "0" (mask), "r" (ADDR)
: "g3", "g4", "g5", "g7", "cc");
return mask != 0;
}
extern __inline__ void clear_bit(unsigned long nr, __SMPVOL void *addr)
{
(void) test_and_clear_bit(nr, addr);
}
extern __inline__ unsigned long test_and_change_bit(unsigned long nr, __SMPVOL void *addr)
{
register unsigned long mask asm("g2");
register unsigned long *ADDR asm("g1");
ADDR = ((unsigned long *) addr) + (nr >> 5);
mask = 1 << (nr & 31);
__asm__ __volatile__("
mov %%o7, %%g4
call ___change_bit
add %%o7, 8, %%o7
" : "=&r" (mask)
: "0" (mask), "r" (ADDR)
: "g3", "g4", "g5", "g7", "cc");
return mask != 0;
}
extern __inline__ void change_bit(unsigned long nr, __SMPVOL void *addr)
{
(void) test_and_change_bit(nr, addr);
}
#endif /* __KERNEL__ */
/* The following routine need not be atomic. */
extern __inline__ unsigned long test_bit(int nr, __const__ __SMPVOL void *addr)
{
return 1UL & (((__const__ unsigned int *) addr)[nr >> 5] >> (nr & 31));
}
/* The easy/cheese version for now. */
extern __inline__ unsigned long ffz(unsigned long word)
{
unsigned long result = 0;
while(word & 1) {
result++;
word >>= 1;
}
return result;
}
#ifdef __KERNEL__
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
#define ffs(x) generic_ffs(x)
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
#endif /* __KERNEL__ */
/* find_next_zero_bit() finds the first zero bit in a bit string of length
* 'size' bits, starting the search at bit 'offset'. This is largely based
* on Linus's ALPHA routines, which are pretty portable BTW.
*/
extern __inline__ unsigned long find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if (offset) {
tmp = *(p++);
tmp |= ~0UL >> (32-offset);
if (size < 32)
goto found_first;
if (~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while (size & ~31UL) {
if (~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp |= ~0UL << size;
found_middle:
return result + ffz(tmp);
}
/* Linus sez that gcc can optimize the following correctly, we'll see if this
* holds on the Sparc as it does for the ALPHA.
*/
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
#ifndef __KERNEL__
extern __inline__ int set_le_bit(int nr, void *addr)
{
int mask;
unsigned char *ADDR = (unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
__asm__ __volatile__("
ldub [%0], %%g3
or %%g3, %2, %%g2
stb %%g2, [%0]
and %%g3, %2, %0
"
: "=&r" (ADDR)
: "0" (ADDR), "r" (mask)
: "g2", "g3");
return (int) ADDR;
}
extern __inline__ int clear_le_bit(int nr, void *addr)
{
int mask;
unsigned char *ADDR = (unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
__asm__ __volatile__("
ldub [%0], %%g3
andn %%g3, %2, %%g2
stb %%g2, [%0]
and %%g3, %2, %0
"
: "=&r" (ADDR)
: "0" (ADDR), "r" (mask)
: "g2", "g3");
return (int) ADDR;
}
#else /* __KERNEL__ */
/* Now for the ext2 filesystem bit operations and helper routines. */
extern __inline__ int set_le_bit(int nr,void * addr)
{
register int mask asm("g2");
register unsigned char *ADDR asm("g1");
ADDR = ((unsigned char *) addr) + (nr >> 3);
mask = 1 << (nr & 0x07);
__asm__ __volatile__("
mov %%o7, %%g4
call ___set_le_bit
add %%o7, 8, %%o7
" : "=&r" (mask)
: "0" (mask), "r" (ADDR)
: "g3", "g4", "g5", "g7", "cc");
return mask;
}
extern __inline__ int clear_le_bit(int nr, void * addr)
{
register int mask asm("g2");
register unsigned char *ADDR asm("g1");
ADDR = ((unsigned char *) addr) + (nr >> 3);
mask = 1 << (nr & 0x07);
__asm__ __volatile__("
mov %%o7, %%g4
call ___clear_le_bit
add %%o7, 8, %%o7
" : "=&r" (mask)
: "0" (mask), "r" (ADDR)
: "g3", "g4", "g5", "g7", "cc");
return mask;
}
#endif /* __KERNEL__ */
extern __inline__ int test_le_bit(int nr, __const__ void * addr)
{
int mask;
__const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
return ((mask & *ADDR) != 0);
}
#ifdef __KERNEL__
#define ext2_set_bit set_le_bit
#define ext2_clear_bit clear_le_bit
#define ext2_test_bit test_le_bit
#endif /* __KERNEL__ */
#define find_first_zero_le_bit(addr, size) \
find_next_zero_le_bit((addr), (size), 0)
extern __inline__ unsigned long find_next_zero_le_bit(void *addr, unsigned long size, unsigned long offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if(offset) {
tmp = *(p++);
tmp |= __swab32(~0UL >> (32-offset));
if(size < 32)
goto found_first;
if(~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while(size & ~31UL) {
if(~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if(!size)
return result;
tmp = *p;
found_first:
return result + ffz(__swab32(tmp) | (~0UL << size));
found_middle:
return result + ffz(__swab32(tmp));
}
#ifdef __KERNEL__
#define ext2_find_first_zero_bit find_first_zero_le_bit
#define ext2_find_next_zero_bit find_next_zero_le_bit
/* Bitmap functions for the minix filesystem. */
#define minix_set_bit(nr,addr) test_and_set_bit(nr,addr)
#define minix_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
#endif /* __KERNEL__ */
#endif /* defined(_SPARC_BITOPS_H) */